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Abstract. A special kind of bosonization technique and renormalization group theory are
employed to study an extended ferromagnetic Kondo lattice model. An effective Hamiltonian
is deduced. On the basis of this effective Hamiltonian the phase diagram is discussed, and the
effects of the introduced Hund anisotropy and antiferromagnetic interaction between the local
spins are clarified. The on-site interaction between the conduction electrons contributes to the
effective ferromagnetic interaction between the local spins through the Hund interaction.

1. Introduction

Recently, colossal magnetoresistance (MR) was discovered in the Mn oxide perovskites
R1−xAxMnO3 (R = La, Nd, Pr; A= Ca, Sr, Ba, Pb) [1] and layered(La,Sr)n+1MnnO3n+1

(n = 2) [2] materials. In these materials, the Mn3+ has three electrons in the t2g state forming
a localizedS = 3/2 spin, and one electron in the eg state hopping between nearest-neighbour
Mn ions. The t2g electrons are coupled ferromagnetically to the itinerant eg electrons through
a very large Hund coupling, and this coupling leads the localS = 3/2 spins of the three
Mn t2g electrons to effectively ferromagnetically couple. Experiments [1] showed that these
materials have a very rich phase diagram. Whenx < 0.2, there is an insulator state, and when
the doping concentration exceeds 0.5 an antiferromagnetic insulator state will appear. In the
doping range 0.2 < x < 0.5, these materials undergo a phase transition from paramagnetic
(PM) to ferromagnetic (FM) metal on cooling, and have a sharp resistivity peak near the Curie
temperatureTc. In this doping range the relative magnetoresistance can be as large as 99% or
more. This novel phenomenon may have potential for technical applications, so study of these
materials is becoming intensive. In theoretical work, how to explain the existing experimental
results has become a central problem. Usually, the following double-exchange Hamiltonian is
the most appropriate model for Mn oxide studies:

H = −t
∑
j,σ

(C
†
j,σCj+1,σ + h.c.)− JH

∑
j,σ,σ ′

Sj · τ j (1)

where the spin of the conduction electronτ j =
∑

σ,σ ′ C
†
j,σ (Eτ σ,σ ′/2)Cj,σ ′ andSj is the local

spin. The first term represents the eg-electron hopping between the nearest-neighbour Mn
ions; the second term is the Hund coupling (JH > 0) between theS = 3/2 t2g localized spin
and the spin of the itinerant eg electron. Solving this Hamiltonian is a rather difficult task.
This is why even as regards this simple form of the Hamiltonian little is known and one has
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to treat the model under some approximation, e.g.JH → ∞ [3], localized spinS → ∞, or
treating the localized spin as a classical spin. In a popular approach [3], the localized spins are
regarded as classical spins, and the eg electrons move between the neighbouring sites in this
background of classical spins with an effective hopping strength. But very recently Dagotto
et al [4] studied this model numerically, and found an extraordinarily rich phase diagram, in
which there is a coexistence state—namely, a phase separation state; this novel regime may
be connected with some experiments. These results indicate that studying Hamiltonian (1)
analytically is still necessary. This effort will be helpful in understanding the full features of
Mn oxides. In addition, the numerical findings suggest that results for the three-dimensional
case are similar to those for the one-dimensional case, and in the low-dimensional layered
materials a very large MR is also detected. So, as regards both theory and experiments, study
of Hamiltonian (1) in the low-dimensional case is required.

On the other hand, Hamiltonian (1) is also called the Kondo lattice model; this model has
been intensively studied in the antiferromagnetic (AFM) case [5], but the FM case is rarely
considered, especially at partial band fillings. Recently, Hur [6] studied the effects of hole
doping and disorder with Hamiltonian (1) by using standard bosonization techniques. As a
restriction of the method, the results are limited to the range of very low doping and weak
coupling. For Hamiltonian (1), the influence [4] of an on-site Coulombic repulsion has been
recently discussed. In view of the large Hund interaction, this term has always been neglected,
and it has been shown [4] that it does not produce qualitative changes in the ground state.
But recent study [7] shows that strong Coulomb interaction is very important. In our paper,
the Coulombic interaction will be included. In addition, to achieve a full understanding of
the phase diagram of the Mn oxides, treatment of the competition between ferromagnetic and
antiferromagnetic interaction is necessary. Thus, an AFM interaction is naturally introduced
into the model Hamiltonian. This interaction may arise from direct interaction, indirect RKKY
coupling [8] or superexchange interaction [9]. In the single-impurity Kondo problem, the
exchange anisotropy is known to play an important role in the low-temperature behaviour,
so the effect of this kind of anisotropy in the Kondo lattice model may also be interesting,
especially at partial band fillings.

In this paper, we will extend the usual double-exchange model by adding the AF interaction
between the local spins and introducing the anisotropy of the Hund interaction to Hamil-
tonian (1). As the first step towards treating the higher-dimensional problem, we will study
the extended model in the one-dimensional case, employing a special kind of bosonization
technique invented by Honner and Gulácsi [10,11] and successfully used in the Kondo lattice
model at partial band filling and Hamiltonian (1). In the following treatment, we will follow
this scheme, and deduce an effective Hamiltonian. On the basis of this effective Hamiltonian,
we will concentrate on studying the low-temperature phase diagram.

2. The model Hamiltonian and its effective form

The model Hamiltonian is

H = −t
∑
j,σ

(C
†
j,σCj+1,σ + h.c.) +U

∑
j

C
†
j,↑Cj,↑C

†
j,↓Cj,↓

−
∑
j

{
J⊥H
2

[
S+
j τ
−
j + h.c.

]
+ J ‖HS

Z
j τ

Z
j

}

+
∑
j

{
J⊥AF

2

[
S+
j S
−
j+1 + h.c.

]
+ J ‖AFSjSj+1

}
(2)
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whereJ⊥H andJ ‖H are the anisotropic Hund interactions.U is the Hubbard interaction term,
andJ⊥AF andJ ‖AF are the nearest-neighbour anisotropic antiferromagnetic exchanges between
the localized spins. Following reference [10], decomposing the site operator into the right-
and left-moving parts, and defining Bose fieldsφσ (j) and5σ(j), in the thermodynamic limit
we find that the Fermi operator can be expressed as

c±,σ (j) ≈ N (α) exp
{
±i
√

4π
[
8±,σ (j) + kF ja

]}
where8±,σ (j) is defined as

8±,σ (j) =
[
φσ (j)∓

∫ ja

−∞
5σ(x) dx

]/
2

and from the commutator ofφσ and its canonical conjugate5σ it follows that[
φσ (j),5σ ′(j

′)
] = iδσ,σ ′Jj−j ′(α)

where

Jj−j ′(α) =
∫ +∞

−∞
cos

[
k(j − j ′)a]32(k) dk

in which3(k) is the cut-off function;α characterizes the delocalization [10]—it describes
the characteristic spatial spread of the conduction electron. It should be noted that the factors
N (α) andJj−j ′(α) depend on the form of the cut-off3(k), and in the following discussion we
will specify it. From this procedure, we obtain the bosonized Hamiltonian. In order to derive
an effective interaction between the localized spins from the Hamiltonian deduced, a unitary
transformation:

R = exp

{
i
JHa√
2π3vF

∑
j

Szj θs(j)

}
(vF = at sin(kF a), kF = nπ/2a, n = 1− x) is introduced. After this preparation, keeping
the nearest-neighbour interaction, and replacing the Bose field of the conduction electron
band by the expectation values in the non-interacting ground state, finally we get an effective
Hamiltonian:

H̃ =
∑
j

{
J⊥AF

2

[
S+
j S
−
j+1 + h.c.

]
−1SzjSzj+1− hjSxj

}
(3)

where

1 = (1HJ
⊥
H )

2a2J1(α)

2π2vF

(
1 +

U

vFπ

)
− J ‖AF (4)

hj = 2J⊥HN 2(α). (5)

In the above equations, the Hund anisotropic parameter1H = J
‖
H/J

⊥
H is introduced for

convenience.

3. The phase diagram

If we are just considering the incommensurate filling case, cos(2kjF a) can be regarded as a
random variable; theñH is nothing but the one-dimensional quantumXXZ-model with a
random transverse field. It is clear that1 consists of two parts; the first part results from the
double-exchange mechanics and always leads to a FM coupling between the local spins. The
second part is the contribution of the AFM interaction between the local spins. The first term
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of Hamiltonian (3) has its origin in the AFM interaction of local spins and drives the system to
theXY -phase. The last term arises from the transverse Hund interaction, and contributes an
effective transverse field which always tends to destroy any kind of order. Thus the competition
of the three terms in Hamiltonian (3) will lead to a complex phase diagram. In the following,
we will quantitatively discuss the properties of Hamiltonian (1) in several different cases using
model (3).

3.1. J⊥AF = 0

WhenJ⊥AF = 0, the Hamiltonian can be reduced to the Ising model with a random field:

HIsing = −
∑
j

1SzjS
z
j+1−

∑
j

hjS
x
j . (6)

For equation (6) we only consider the case of1 > 0, since for1 < 0 the model can be
transformed to the positive case. The critical behaviour [12] is described by the function

ln(1) = ln(hi)

from which we get the critical line

(1HJ
⊥c
H )2

a2J1(α)

2π2vF

(
1 +

U

vFπ

)
− J⊥cH N 2(α)− J ‖AF = 0. (7)

WhenJ⊥H > J⊥cH > 0, the system is in the FM phase, while whenJ⊥H < J⊥cH , the system is in
the paramagnetic (PM) state.

In order to discuss the phase diagram, we must know the form ofN (α). We choose a
sharper cut-off function, the Gaussian. After examining the non-interacting expectation values,
we find that, when3(k) = exp(−α2k2/2), we have

N (α) ≈ 1/
√

4
√
πα J1(α) = (

√
π/2α) exp[−(a/2α)2].

We insertN (α) andJ1(α) into the critical function (7); then the critical line can be obtained.
But here we must know the behaviour ofα. This parameter characterizes the spatial spread of
the conduction electrons. In the half-filling case the conduction electrons spread within a very
narrow space because double occupation at the same site is forbidden. When the band filling
is lowered from half-filling, the conduction electron average spatial spread will be magnified.
We describe this effect simply by usingα = c/n, in whichc is a constant, treated as a fitting
parameter for numerical results [4]. Similar behaviour is also obtained in reference [11] by
comparison with numerical results. To get the value ofc, we set1H = 1,U = 0, andJ ‖AF = 0.
Then we findc ≈ 0.28 by fitting the numerical results in reference [4]. The full phase diagram
is plotted in figure 1, from which it can be seen that our results agree well with the numerical
results over a wide range. In our following treatment, we assume that the behaviour ofα is
independent of other parameters and that this holds in all cases.

On the basis of equation (7), we can discuss the effect of Hund anisotropy. The critical
line can be obtained from equation (7):

12
HJ
⊥c
H = f (n,U)/2 +

√
f 2(n, U)/4 +1Hg(n,U, J

‖
AF ). (8)

When1H = 1, we recover the isotropic case. As1H 6= 1, the anisotropy will move the phase
boundary between the FM and PM regions. For1H > 1, the FM region will be extended;
this anisotropy effectively increases the FM interaction between local spins. For1H < 1, the
phase boundary moves towards the FM phase. This effect of1H is also shown in figure 1.
The Hund anisotropy directly changes the effective FM interaction between the local spins, so
it will play an important role in the phase transition.
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Figure 1. The phase diagram of the FM Kondo lattice model withS = 1/2 localized spins. The
solid boxes are the results from reference [4] and the solid curve is the result from our theory. For
the dotted curve,U = 0, JAF = 0.05,1H = 1.4, and for the dashed curve,U = 0, JAF = 0.05,
1H = 0.8.

The effect of the HubbardU can also be easily deduced from equation (7). These effects are
plotted in figure 2(a) for different kinds of parameter. It is obvious that the on-site CoulombU

can stabilize the FM ground state, because the forbidding of double occupation can decrease the
probability of neighbouring conduction electrons having different spin directions. This effect
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Figure 2. (a) The phase diagram of ourS = 1/2 model in different cases. (b) The phase diagram
of the FM Kondo lattice model withS = 1/2 localized spins atx ≈ 0.5. The solid boxes are the
results from reference [13]. The curve is our fitting result.
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favours the FM ordering. In our treatment, the HubbardU directly increases the strength of the
effective FM coupling between the local spins. In reference [4], it was shown that for localized
spinsS = 1/2 andS = 3/2, the phase diagrams show similar results. So we believe that our
above results are still valid forS = 3/2. Fortunately, there are existing results [13] which can
be used to test our arguments. WhenJ⊥AF = 0 and1H = 1, the effects of the HubbardU can
be simply expressed as

J cH ∝ 1/(1 +U/2π sin(nπ/2)).

We use this to fit the numerical results. The fitting line and the numerical results are plotted in
figure 2(b). It is found that throughout the parameter range, our fitting accords well with the
numerical results.

When the anisotropy of the Hund interaction is strong enough, we consider the limit of
J⊥H = 0. Equation (3) is reduced to the well-knownXXZ-model. When|1| 6 J⊥AF , the model
is in the gapless quasi-long-range-orderedXY -phase [12]. For1 < −J⊥AF , the ground state is
AF ordered along theZ-axis and a gap opens in the spin excitation. For1 > J⊥AF , the ground
state is FM. When all of the spin parameters are fixed, we change the conduction electron
band fillingn ∝ 1/α. For appropriate parameters, if one lowers the band filling, the system
may sequentially reach two phase transition points: AFM→ XY andXY → FM. These
transitions may also account for the complicated phase transition discovered in experiments.

3.2. J⊥AF 6= 0

As J⊥H has finite value and is small, the model is very intricate; we have to employ renormal-
ization group theory to study its phase diagram. First, using the Jordan–Wigner transformation,
we get a spinless fermion model. To treat this model, it is convenient to use the bosonization
method. Here only the final results are given. It should be noted that the transverse field in
theSx-direction is decomposed into slowly varying (q ∼ 0) and oscillating (q ∼ π/a) parts.
The latter can be called backward scattering, which can lead to localization. However, in our
model the oscillating part is exactly equal to zero. So localization will not be introduced into
our system. The bosonized Hamiltonian is given by

H̄ = av

2

∫
dx

{
5̄2 + (∇φ̄)2 + α1 cos(

√
16πKφ̄) + α2 cos

(√
4πKφ̄ +

√
π

K
X̄

)}
(9)

in which

K =
√(

1 +
21

πJ⊥AF

)/(
1− 21

πJ⊥AF

)
(10)

wherev is the spin velocity andK is the spin stiffness,̄X(x) is the dual field of5̄(x), defined
as5̄(x) = ∂X̄(x)/∂x, α1 ∼ 1, andα2 ∼ J⊥HN 2(α). In the lowest order, the scaling equations
can be derived using the standard Kadanoff [14] transformation. The scaling equations forα1

andα2 are given as follows:

dα1(l)

dl
= [2− 4K(l)] α1(l) (11)

dα2(l)

dl
=
[
2−K(l)− 1

4K(l)

]
α2(l). (12)

Equation (12) implies that the transverse field is relevant only for 1−√3/2< K < 1 +
√

3/2,
and for a pureXXZ-model there are three phases, namely the AF phase,XY -phase, and FM
phase. Thus we have five different cases:
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(I) K → ∞. A fully polarized FM phase will be formed.α1 andα2 are irrelevant under
renormalization. In our theory this phase has1/J⊥AF > π/2, which is somewhat larger
than the exact result1/J⊥AF = 1. This difference arises from the bosonization method.
Notwithstanding the above, it can be concluded that there is a certain(1/J⊥AF )

∗ such that
when1/J⊥AF > (1/J⊥AF )

∗, the system will be in the FM phase.
(II) 1+

√
3/2< K (andK is finite). Here bothα1 andα2 are irrelevant under renormalization.

So the only stable phase is the gaplessXY -phase. For this case,1 dominates overJ ‖AF .
(III) 1/2 < K < 1 +

√
3/2. In this range,α1 is renormalized to zero. The pure system is the

XY -phase; even an infinitesimal disorderedhi will destroy the gaplessXY -phase and the
result will be a PM phase. It should be noted that whenhi is strong, the problem will be
beyond our renormalization group theory treatment.

(IV) 1 − √3/2 < K < 1/2. This case is very complex.α1 andα2 are both renormalized to
infinity. If we consider a strongly anisotropic case,J⊥H is very small. In this case, the
singlet-to-triplet gap may not be destroyed by the small randomhi ∝ J⊥H . The AF phase
is still retained in this case. Moreover, in the system there is chance to avoid making the
above assumption. From the above discussion,hi ∝ N 2(α) ∝ n; thus whenn → 0,
hi will approach zero. So in this situation, our above argument still holds. Whenhi is not
very weak, there will be competition between1 andhi . 1 will lead to AF order andhi
will tend to destroy this order. So, in this range, the AF phase may be replaced by a PM
phase.

(V) K < 1−√3/2. In this range,α2 will be renormalized to zero and can be neglected. Then
what is left is just a pureS = 1/2 XXZ-model. For this model whenK < 1− √3/2,
the ground state is AF with a singlet-to-triplet excitation gap. In this phase,J

‖
AF must

be strong enough to exceed the FM interaction of the local spin induced by the Hund
interaction.

4. Discussion and conclusions

Combining the discussion of theJ⊥AF = 0 andJ⊥AF 6= 0 cases, we draw the following
conclusions. The Coulomb interaction can stabilize the FM ground state. It directly increases
the effective FM interaction between local spins. In contrast, the longitudinal AFM interaction
of local spins will decrease the effective FM interaction and can drive the system to an AFM
phase. And the transverse part of the AFM interaction can induce a long-range-orderedXY -
phase. The Hund anisotropy will move the phase boundary. The contributions of the above
interactions will lead to a very complex phase diagram.
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